Knife XL FFusion - CivitaI / LoRA + FA Text Encoder

LORA
Original


Updated:

🗡️ FFusionAI's Knife LoRA Model Demonstrations

This demonstration dives deep into the intricacies of three distinct LoRA trainings. Each model has been meticulously trained on a unique dataset of 200 knives, captured in the professional environment of our partner, NoramePhotography Studio. The visuals span from pure white studio shots to rustic wood settings, glinting coins, and fantasy-inspired indoor decor.

🔍 Dataset Insight: The dataset, although rich in variety, was curated with a fast and informal tagging approach, mainly for demonstration purposes. If you're intrigued by the knife photo session and wish for a more in-depth training, do let us know!

While depth variations are in the pipeline, our current focus revolves around evaluating the distinct LoRA variations.

🎯 Models at a Glance:

1. CivitAI's Quick LoRA Training (Lora1)

📌 Highlights:

  • Powered by CivitAI's new LoRA trainer.

  • Swift 10-epoch run, completed in a breezy 20-30 minutes.

  • Quality may vary with default settings, but hey, time is essence!

📊 Specifications:

  • Date: 2023-09-19T14:36:14

  • Resolution: 1024x1024

  • Architecture: stable-diffusion-xl-v1-base/lora

  • Network Dim/Rank: 32.0

  • Alpha: 16.0

Knife_XL_FFusion.safetensors
Date: 2023-09-19T14:36:14 Title: Knife_XL_FFusion
Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora
Network Dim/Rank: 32.0 Alpha: 16.0
Module: networks.lora
Learning Rate (LR): 0.0005 UNet LR: 0.0005 TE LR: 5e-05
Optimizer: bitsandbytes.optim.adamw.AdamW8bit(weight_decay=0.1)
Scheduler: cosine_with_restarts  Warmup steps: 0
Epoch: 10 Batches per epoch: 74 Gradient accumulation steps: 1
Train images: 282 Regularization images: 0
Multires noise iterations: 6.0 Multires noise discount: 0.3
Min SNR gamma: 5.0 Zero terminal SNR: True Max grad norm: 1.0  Clip skip: 1
Dataset dirs: 1
        [img] 282 images
UNet weight average magnitude: 2.634092236933176
UNet weight average strength: 0.009947009810559605
Text Encoder (1) weight average magnitude: 1.696394163771355
Text Encoder (1) weight average strength: 0.008538951936953606
Text Encoder (2) weight average magnitude: 1.720911101275907
Text Encoder (2) weight average strength: 0.006699097931942388

2. LoRA FA with Text Encoder Only (Lora2)

📌 Highlights:

  • Exclusive training on text encoder.

  • Absence of UNet in this LoRA variant.

📊 Specifications:

  • Date: 2023-09-19T20:04:24

  • Resolution: 1024x1024

  • Architecture: stable-diffusion-xl-v1-base/lora

  • Network Dim/Rank: 32.0

  • Alpha: 32.0

Knife-FFusion-LoRA-FA.safetensors

Date: 2023-09-19T20:04:24 Title: Knife-FFusion-LoRA-FA
Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora
Network Dim/Rank: 32.0 Alpha: 32.0
Module: networks.lora_fa

Text Encoder (1) weight average magnitude: 3.986337637923385
Text Encoder (1) weight average strength: 0.018590648076750333
Text Encoder (2) weight average magnitude: 4.043434837883338
Text Encoder (2) weight average strength: 0.014620680042179104
No UNet found in this LoRA

3. General LoRA Training

📌 Highlights:

  • Comprehensive LoRA training with diverse specifications.

  • Trained on an extensive dataset of 485 knife images.

📊 Specifications:

  • Date: 2023-08-26T23:08:56

  • Resolution: 1024x1024

  • Architecture: stable-diffusion-xl-v1-base/lora

  • Network Dim/Rank: 32.0

  • Alpha: 16.0

    FF-Minecraft-XL
    Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora
    Network Dim/Rank: 32.0 Alpha: 16.0
    Module: networks.lora
    Learning Rate (LR): 0.0005 UNet LR: 0.0005 TE LR: 5e-05
    Optimizer: bitsandbytes.optim.adamw.AdamW8bit(weight_decay=0.1)
    Scheduler: cosine_with_restarts  Warmup steps: 0
    Epoch: 10 Batches per epoch: 121 Gradient accumulation steps: 1
    Train images: 458 Regularization images: 0
    Multires noise iterations: 6.0 Multires noise discount: 0.3
    Min SNR gamma: 5.0 Zero terminal SNR: True Max grad norm: 1.0  Clip skip: 1
    Dataset dirs: 1
            [img] 458 images
    UNet weight average magnitude: 2.9987627096874507
    UNet weight average strength: 0.011098071585284945
    Text Encoder (1) weight average magnitude: 1.729993708156961
    Text Encoder (1) weight average strength: 0.008685239007756952
    Text Encoder (2) weight average magnitude: 1.7630326984758309
    Text Encoder (2) weight average strength: 0.0068346636309082635

🎨 Readme Crafted by: 🤖 & FFusionAI 🚀

🌐 Contact Information

The FFusion.ai project is proudly maintained by Source Code Bulgaria Ltd & Black Swan Technologies.

📧 Reach us at di@ffusion.ai for any inquiries or support.

🌌 Find us on:

Email

🌍 Sofia Istanbul London

The model already exists. If you are the creator, please contact us to claim it.
View duplicate model

Version Detail

SDXL 1.0
<p>FF-Minecraft-XL</p><p>Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora</p><p>Network Dim/Rank: 32.0 Alpha: 16.0</p><p>Module: networks.lora</p><p>Learning Rate (LR): 0.0005 UNet LR: 0.0005 TE LR: 5e-05</p><p>Optimizer: bitsandbytes.optim.adamw.AdamW8bit(weight_decay=0.1)</p><p>Scheduler: cosine_with_restarts Warmup steps: 0</p><p>Epoch: 10 Batches per epoch: 121 Gradient accumulation steps: 1</p><p>Train images: 458 Regularization images: 0</p><p>Multires noise iterations: 6.0 Multires noise discount: 0.3</p><p>Min SNR gamma: 5.0 Zero terminal SNR: True Max grad norm: 1.0 Clip skip: 1</p><p>Dataset dirs: 1</p><p> [img] 458 images</p><p>UNet weight average magnitude: 2.9987627096874507</p><p>UNet weight average strength: 0.011098071585284945</p><p>Text Encoder (1) weight average magnitude: 1.729993708156961</p><p>Text Encoder (1) weight average strength: 0.008685239007756952</p><p>Text Encoder (2) weight average magnitude: 1.7630326984758309</p><p>Text Encoder (2) weight average strength: 0.0068346636309082635</p>

Project Permissions

    Use Permissions

  • Use in TENSOR Online

  • As a online training base model on TENSOR

  • Use without crediting me

  • Share merges of this model

  • Use different permissions on merges

    Commercial Use

  • Sell generated contents

  • Use on generation services

  • Sell this model or merges

Comments

Related Posts

No posts yet